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ABSTRACT

In this paper we describe some characteristics of the acoustic
modeling used in the Philips continuous-speech recognition
system for the DARPA Hub-4 1997 evaluation, which are re-
lated to robustness issues. We aimed at a conceptually simple
system: We trained two model sets on 70 hours of the Hub-
4 training data, one for within-word and one for cross-word
decoding. These model sets were used for both genders and
all environmental conditions. In order to be able to do so,
channel normalization (mean, variance normalization) and
speaker normalization (vocal tract length normalization, re-
alized by an appropriate shift of the center frequencies of
the mel �lter bank) have been applied, as well as adaptation
techniques. MLLR-based unsupervised batch adaptation on
clusters of segments was conducted both after a �rst within-
word decoding and a cross-word decoding pass. The train-
ing strategy and the e�ects of the various normalization and
adaptation techniques will be discussed in the paper.

1. INTRODUCTION

Speech recorded from radio or television broadcasts exhibits
large variations with respect to the quality of the microphone
or channel, the characteristics of the speaker, and the condi-
tion of the background. Recordings range from high-quality
studio recordings of an experienced announcer to very noisy
telephone interviews from the trading oor of the stock ex-
change. Robustness is therefore a major issue for a speech
recognizer for such a task.

In our system we concentrated on normalization techniques
to come up with a robust feature set that is invariant to
changes of the environment or the speaker characteristics,
and on adaptation techniques. The goal was not only to
improve performance but also to obtain a conceptually simple
system with one model set for all genders and environments.
Another advantage would be that condition and/or gender
need not be classi�ed.

We were attracted by the conceptual simplicity of the BBN
approach taken in the Hub-4 '96 evaluation [5]. Rather than
making condition-speci�c models they decided to train just
a single model set for all focus conditions. This simpli�ed
the system enormously and rendered condition classi�cation
obsolete, while at the same time maintaining good recogni-
tion accuracy. Inspired by this experience we directed our
research e�ort in the same direction. We will show here that
one model set not only simpli�ed the system but also yielded
better error rate performance, compared to more complex
approaches.

An interesting question is related to the use of linear discrimi-
nant analysis (LDA). By de�nition the transformation matrix
is (training) data-dependent and therefore potentially a dis-
advantage in a highly varying environment. We investigated
several options on how to train the LDA.

Employing a single model set for all conditions and envi-
ronments requires e�ective channel and speaker normaliza-
tion and adaptation schemes. Normalization algorithms are
typically performed in the signal processing front end of the
recognizer, though not necessarily. We show how cepstral
mean and variance normalization lead to features that are
less sensitive to additive noise and linear channel distortions.
Vocal tract normalization serves to remove speaker charac-
teristics to an extent that gender-speci�c modeling becomes
unnecessary. MLLR adaptation is then applied on clusters of
segments both for the within-word and cross-word models.

The next section presents experimental results for di�erent
databases used to train the acoustic models and the LDA
transformation matrix. Section 3 describes variance and vo-
cal tract normalization, and in Section 4 we give a short de-
scription of the adaptation approach employed.

2. TRAINING STRATEGY
In the acoustic modeling we employ continuous mixtures of
Laplacian densities with a single, globally pooled deviation
vector. We use di�erent model sets for within-word and cross-
word decoding and apply decision trees in either case for
triphone clustering. More on the acoustic modeling can be
found in [1].

In last year's Hub-4 evaluation there was no unanimous view
of what would be the best training strategy: was it train-
ing on Wall Street Journal data and then doing supervised
adaptation on Hub-4, possibly even on each focus condition
speci�cally, or was it Hub-4 training, here again with the op-
tion of training focus-speci�c models or one general model
set for all conditions. In light of the availability of another
50h of broadcast news acoustic training data we revisited this
question and investigated several alternatives.

We compared the following scenarios:

1. Training on the wsj0+1 training data and subsequent
supervised adaptation on each of the Hub-4 focus con-
ditions speci�cally.

2. Training of a separate model set on each of the Hub-4
focus conditions.

3. Training of one model set on all available Hub-4 data.



Table 1: Word error rates in % on Hub-4'96 dev. set (male
speakers only) for di�erent training scenarios. Bigram lm,
gender-dependent setup, within-word models, no adaptation
in recognition, partitioned evaluation.

Focus condition
Scenario

overall F0 F1 F2
1 41.9 18.7 41.8 50.2
2 42.4 18.4 43.1 49.7
3 38.6 17.5 38.2 46.0

Focus condition
Scenario

F3 F4 F5 FX

1 43.9 38.0 40.8 67.6
2 42.7 35.7 47.4 69.6
3 39.4 33.6 37.8 65.8

Note that for each scenario we trained separate model sets
for male and female speakers (gender-dependent setup). The
test results reported below were obtained on the Hub-4'96
development data in a partitioned evaluation mode, i.e. with
known gender and focus condition information. They favor
the focus-speci�c scenarios (the �rst two) if we assume that
the classi�cation in an unpartitioned evaluation mode would
not be perfect.

The motivation for the �rst scenario was that with wsj0+1
a large and well transcribed database exists, on which we
had gained already a lot of experience in the past. Super-
vised adaptation was conducted with MAP and MLLR. For
MLLR, a separate transformation matrix was used for each
allophone.

The second scenario promised to encounter the smallest mis-
match between training and test data, however, possibly hav-
ing too few training data per condition; while the third sce-
nario would deliver the simplest system with just one model
set for all conditions.

An additional complication resulted from the use of linear
discriminant analysis (LDA) in our recognizer [6]. Since the
transformation matrix is (training) data-dependent we had to
decide on which data to train the matrix. For the experiments
reported in Table 1 we used an LDA matrix which had been
obtained on the wsj0+1 training data. From our experience
of the past we know that a mismatch between the training
data used to train the models and the training data used to
estimate the LDA transformation could lead to signi�cant
performance degradation [7]. Therefore the chosen setup of
Table 1 de�nitively favors the �rst scenario, where the LDA
was trained on the same database as the models.

The clear advantage of training a single model set on all Hub-
4 data, as is evident from Table 1, is probably due to the
increased amount of acoustic training data compared to last
year.

The next question however is, what is the e�ect of the LDA
transformation. The training on the Hub-4 data was better
although the LDA matrix had been estimated on the wsj
database. A �rst informal test showed that LDA, however,
was still bene�cial: using no LDA at all increased the error

Table 2: Word error rates in % on Hub-4'96 dev. set
(male speakers only) for di�erent LDA matrices. Bigram lm,
gender-dependent setup, within-word models, no adaptation
in recognition, partitioned evaluation.

Focus condition
LDA matrix

overall F0 F1 F2
trained on wsj0+1 36.9 17.6 36.5 44.6
trained on Hub-4 36.2 16.9 36.6 43.4

Focus condition
LDA matrix

F3 F4 F5 FX
trained on wsj0+1 33.6 31.4 37.1 62.3
trained on Hub-4 32.6 30.0 37.0 61.1

rate by 5% on the F0 subcorpus. Table 2 compares results for
an LDA matrix trained on all Hub-4 data to an LDA matrix
trained on wsj0+1 data for training scenario 3. Note that
the results for the wsj-LDA are better than in table 1 due to
other changes in the system (a.o. variance normalization, see
section 3).

The performance improvement obtained by an LDA matrix
trained on Hub- 4 data is not big, however consistent over
most focus conditions. It is interesting to note that the
eigenvalues of the LDA trained on wsj-data are considerably
larger than those of the transformation trained on the Hub-4
data: The largest eigenvalue of the \wsj LDA" is 6.95 com-
pared to 4.15 for the \Hub-4 LDA". This indicates that the
wsj training data are much less noisy such that the aver-
age within-class covariance is smaller than in the Hub-4 case.
However, although the eigenvalues are better, the \wsj LDA"
performed worse on the Hub-4 test data. This result must
be attributed to the \mismatch" between the model training
database (Hub-4) and the LDA traning database (wsj).

3. ACOUSTIC FRONT END
In the acoustic front end of the Philips Continuous-Speech
recognizer mel-frequency cepstral coe�cients are computed.
Although the segmenter delivers information on the band-
width of the underlying signal [2], be it narrowband tele-
phone speech or wideband speech, one common signal anal-
ysis based on the assumption of wideband data was applied
to all data. 15 cepstral coe�cients were computed from a
20-channel �lterbank, whose center frequencies are equidis-
tant on a mel-scale. The static features, their �rst-order lin-
ear regression coe�cients, and the log-energy and their �rst-
and second-order regression coe�cients make up the \pre-
liminary" feature vector. Then three subsequent preliminary
feature vectors are adjoined to a 99-component vector, of
which a 35-component feature vector is extracted by LDA
analysis.

3.1. Channel Normalization

In order to improve the insensitivity of the feature vector
to distortions cepstral mean and variance normalization are
applied. It is well known, that a constant, though unknown
channel transfer function, a�ects the mean of the cepstral
features. Further it has been observed that additive noise
results, among other e�ects, in a mean shift and reduction of
the variance of the distributions of the cepstral coe�cients
[4].



Table 3: E�ect of variance normalization on word error rates
on Hub-4'96 dev. set (male speakers only). Bigram lm,
gender-dependent setup, within-word models, no adaptation
in recognition, partitioned evaluation.

variance Focus condition
normalization overall F0 F1 F2
no 38.6 17.5 38.2 46.0
yes 37.3 18.4 36.5 44.4
variance Focus condition
normalization F3 F4 F5 FX
no 39.4 33.6 37.8 65.8

yes 35.9 31.8 36.3 64.3

The mean and variance normalized feature yk(t) is computed
as follows:

yk(t) =
xk(t)� �xk(t)

�̂k(t)
;k = 1; � � � ;K

where k is the cepstral index, K being the number of (static)
features. �xk(t) is an estimate of the mean and �̂k(t) is an es-
timate of the standard deviation of the input cepstral feature
xk(t). Both mean and variance are computed over a block
of frames, in our case over one segment, as delivered by the
segmenter. This operation is carried out on all static cepstral
coe�cients.

The e�ect of variance normalization is that, irrespective of
the dynamic range of the input feature stream, each out-
put feature has unit variance (and power, because of cepstral
mean normalization):
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T denotes the length of the segment in number of frames.
While this normalization is conducted with respect to time
for each feature independently, it is easy to see that as a
result the variance of each feature vector is unity on average:
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On the Hub-4 development data we observed on average a
performance improvement of about 3% due to variance nor-
malization, see Table 3.

3.2. Vocal Tract Normalization

Vocal Tract Normalization (VTN) performs a normalization
in the signal space by, typically linearly, warping the fre-
quency axis by a speaker-speci�c warping factor, see e.g. [8].
The intention is, that after normalization the inuence of
di�erences in the vocal tract length across speakers on the
computed feature vector are removed to a great extent. We
implemented the warping by an appropriate shift of the cen-
ter frequencies of the mel �lter bank. For the warping factor
selection we adopted a maximum-likelihood approach similar
to [8]: a preliminary transcription of the utterance to be rec-
ognized is obtained from a �rst bigram decoding pass without
frequency warping. Then that warping factor is determined

Table 4: E�ects of VTN on the word error rate for gender-
dependent (GD) and gender-independent (GI) models. WSJ
5k 92/93 dev/eval test sets, bigram lm.

VTN in #dens del { ins WER
Setup

train recog (m+f) [%] [%]

no no 95k+95k 1.7 { 0.9 8.9
no yes " 1.7 { 1.0 8.7

GD
yes no " 1.7 { 1.1 9.1
yes yes " 1.6 { 0.9 8.5
no no 150k 1.7 { 0.9 9.0
no yes " 1.6 { 0.9 8.5

GI
yes no " 1.7 { 1.4 10.9
yes yes " 1.5 { 0.9 8.0

which yields the largest likelihood of the test utterance taken
the preliminary transcription as hypothesized word sequence,
and then the �nal decoding is conducted with the frequency
axis warped according to this factor.

Vocal tract normalization can be carried out in training and
in recognition, and it can be used in a gender-dependent (GD)
and in a gender-independent (GI) setup. In order to assess
di�erent scenarios we ran a number of experiments on the
Wallstreet Journal database. Table 4 presents recognition
results on the 4 wsj 5k 92/93 dev/eval test sets with training
on the wsj0 database.

Note that speaker normalization only in training results in
worse error rate performance compared to the baseline sys-
tem without VTN, in particular in the GI case. Only if VTN
is also applied in recognition, a reduction in error rate can
be achieved.

Although the baseline error rate for a SD setup is slightly
better, the results for VTN in training and recognition tend
to be better in the GI case. Obviously, VTN is able to dis-
card gender-speci�c variations from the training data and can
bene�cially exploit the larger training database. This is con-
sistent with the experience of other researchers, e.g. [9]. We
concluded that VTN provides a means to overcome the need
for gender-dependent acoustic models.

We repeated some of the scenarios on the Hub-4'96 devel-
opment data, see Table 5, and could observe similar trends.
Note however, that the error rate reduction due to VTN was
considerably smaller, e.g. 3.3% when using VTN in training
and recognition in a gender-independent setup, compared to
11% on wsj. We then decided to use a GI setup with VTN
in training and recognition for the Nov'97 evaluation.

Using VTN in an unpartitioned evaluation poses additional
problems. At least for the segmentation we used, the average
length of a segment is larger in the partitioned evaluation
of the development set (13 seconds) than in unpartitioned
evaluation of the evaluation data (6.5 seconds for eval'97).
We observed that the estimation of the warping factor was
the less reliable the shorter the segments were on which the
warping factor was estimated. We therefore decided to do
no frequency warping for segments, for which we had fewer
than a certain minimum number of frames to estimate the



Table 5: Word error rates in % on Hub-4'96 dev. set (male
speakers only) for di�erent vtn scenarios. Bigram lm, within-
word models, no adaptation in recognition, partitioned eval-
uation.

VTN in Focus condition
Setup

train recog overall F0 F1 F2
GD no no 36.2 16.9 36.6 43.4
GD no yes 35.5 16.8 35.8 40.7
GI no no 36.5 17.1 36.5 45.1
GI yes yes 35.3 16.4 35.3 42.4

VTN in Focus condition
Setup

train recog F3 F4 F5 FX
GD no no 32.6 30.0 37.0 61.1
GD no yes 31.7 29.7 36.5 63.0
GI no no 33.7 29.3 36.6 61.2
GI yes yes 30.5 29.7 34.1 62.4

warping factor. Table 6 presents recognition results for a
minimum number of 100 frames. Due to this threshold we
did no frequency warping for 9% of the segments. This of
course was no ideal solution since no normalization on the
recognition data is unfavorable if the training data had been
normalized. Currently we are trying to apply VTN on a per
segment cluster level rather than on a per segment level.

Table 6: E�ects of VTN on the word error rate for gender-
dependent (GD) and gender-independent (GI) models. Hub-
4 eval'96 test set, bigram lm, within-word models, unparti-
tioned evaluation, NIST'96 scoring rules.

VTN in Over- �le1 �le2 �le3 �le4
Setup

train recog all
no no 36.3 37.1 35.3 40.4 32.4

GD
no yes 35.6 35.3 34.7 40.6 31.8
yes no 38.9 42.0 39.6 41.3 32.4

GI
yes yes 35.4 36.2 34.1 39.4 32.2

4. ADAPTATION
MLLR unsupervised adaptation of the mean vectors is ap-
plied on clusters of segments using the Least Mean Squares
approximation [10]. For information on the clustering proce-
dure, see [11]. The regression classes are based on phonetic
knowledge and are dynamically de�ned using a tree organ-
isation. The amount of adaptation speech determines both
the number of active regression classes and the structure of
the MLLR transformation matrices. In light of the presum-
ably high error rate we adopted a conservative approach and
used more than one MLLR transformation matrix only for
clusters with more than 10000 frames. We used a single
block-diagonal or purely diagonal matrix if the number of
observations was below 1000 and 200, respectively.

Note that MLLR adaptation was applied to both the within-
word model set and the cross-word model set. Table 7
presents the results for adaptation of the mean vectors of
the within-word models. It can be seen that the error rate
improvement due to VTN and MLLR was about 8% on the
eval'97 data.

Table 7: Word error rates on eval'97 for bigram lm, gender-
independent setup, within-word models. NIST'97 scoring
rules.

Word error rate [%]
Bigram 29.0
+ VTN + MLLR 26.7

5. CONCLUSIONS
By applying channel (mean and variance normalization)
and speaker (vocal tract normalization) normalization tech-
niques, as well as speaker adaptation (MLLR), focus-, gender-
or bandwidth-speci�c acoustic modeling was avoided. We
achieved our eval'97 results with only two model sets, one for
within-word and one for cross-word decoding.
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